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The structure of the far-field turbulent region of an incompressible free jet 
developing downstream of an axisymmetric nozzle is studied by means of the 
Reynolds time-averaged equations. The analysis employs the method of matched 
asymptotic expansions, with limit-process expansions developed in the limit of large 
Reynolds number. The analysis reveals the existence, far downstream of the nozzle 
exit, of a turbulent core region, an irrotational exterior region, and a distinguished 
intermediate region. Self-similar formulations are sought for all three regions in 
terms of appropriate independent and dependent variables. The stress- and pressure- 
function solutions for the exterior region, unlike the mean-velocity solutions, 
represent new information on the far-field flow behaviour. The analytical results of 
the centreline decay of the mean axial velocity and those of the radial distributions 
of the axial and radial mean-velocity components and the shear- and normal-stress 
components are compared with available experimental data. 

1. Introduction 
The self-similar turbulent round jet, because it is a relatively simple turbulent 

shear flow, has been the subject of extensive study, both theoretical (see e.g. 
Abramovich 1963 ; Hinze 1975 ; Townsend 1976; Schlichting 1979), and experimental 
(see e.g. Reichardt 1941 ; Hinze & Van der Hegge Zijnen 1949; Wygnanski & Fiedler 
1969). From the earliest study (Tollmien 1926) up to the present, the (classical) 
theoretical approach has been to concentrate on the leading-order approximation of 
the boundary-value problem for the downstream core region to determine the 
solutions for the mean velocity and the turbulent shear stress. 

This paper presents a theoretical study of the structure of a turbulent 
incompressible, isothermal jet issuing from an axisymmetric nozzle. Attention is 
directed to the flow-field region far enough downstream of the nozzle exit that there 
is no residual effect of the initial conditions and self-similarity is attained. In 
particular, by means of a higher-order asymptotic analysis of the Reynolds time- 
averaged equations and complementary boundary conditions, presented in $2, the 
uniformly valid behaviour of the flow quantities, from the jet centreline to the 
ambient far field, is determined for this downstream self-similar region (see table 1).  

In 5 3, through the consideration of higher-order approximations of the boundary- 
value problem, in conjunction with the modelling of the experimental data, the 
solutions for the turbulent normal stresses and the mean pressure in the core region 
are also ascertained. This higher-order analysis establishes that the resulting core- 
region solutions are not uniformly valid at the outer edge of this region. To obtain 
a uniformly valid picture of the flow field, it is necessary to introduce, in addition to 
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AMBIEKT 
EXTERIOR REGION 

x , = S X ,  r , = S R :  [ = r s / x s = R f X ;  

P = Pp,, T = PT,, M = #pa, N = S4v,. 
Y = * 8 ;  u = 6%,, v = SZV,, a = 63w,, 

5, = sx, rk = &R ; B = r , / x k  = S:R/X;  
INTERMEDIATE REGIOIS 

Y = A,x ,+S$, :  , U = S2u,, 
P = P p k ,  T = &,, M = S3ptr N = S3v,. 

x = S X ,  r = R :  v = r f x = S I R f X ;  

P = 6 p ,  T = & ,  M = & p ,  N = S v .  

V = -&A,r,-'+&v,,  a = &w,, 

CORE REGION 

Y=*: u=u, v=sv ,  Q = w ,  

JET CENTRELIKE 

TABLE 1 .  The asymptotic structure of the flow quantities 

the downstream core region, a downstream exterior region, a t  the outer edge of which 
the flow quantities attain their ambient values ; and a downstream intermediate 
region, in which the flow changes from a core-region-like flow to an exterior-region- 
like one. 

The far-field aspects of jet flow are not often discussed in the literature. Landau & 
Lifshitz (1959) determine the 'mean flow in the jet outside the turbulent region', 
which (roughly) corresponds to the downstream exterior region. In $ 5 ,  the 
appropriate scaling of the variables indicates that, to leading order of approximation, 
the exterior region is a turbulent region: the flow is irrotational, yet there is a 
convection-pressure-gradient-turbulent-stress balance in both the axial and the 
radial momentum equations. Whereas the resulting mean-velocity solutions are 
essentially the ones determined by Landau & Lifshitz, the exterior-region stress- and 
pressure-function solutions represent new information concerning the far-field 
behaviour of the flow. The practical motivation for the present study stems from 
computational fluid dynamics addressing large-eddy simulation (LES) and subgrid- 
scale (SGS) turbulence modelling. The asymptotic analysis of the fully developed 
region of the round jet is useful in examining the applicability of the results of the 
eddy-viscosity model to SGS turbulence. Furthermore, present results provide the 
far-field information, with which the conditions imposed on certain artificially 
introduced pseudo-boundaries in LES computations must be consistent. 

Although the leading-order core-region and exterior-region solutions for the radial 
velocity match directly, the corresponding solutions for the other flow quantities do 
not. An examination of the leading-order and higher-order solutions for these two 
regions (but especially those for the core region) suggests the existence of the 
downstream intermediate region, formulated and analysed in 8 4. The leading-order 
intermediate-region solutions of all flow quantities match directly to all of the 
leading-order core-region solutions (in a near-field overlap domain) and also match 
directly to  all of the leading-order exterior-region solutions (in a far-field overlap 
domain). 

With the presentation of the pertinent solutions for the core, exterior, and 
intermediate regions, and with the determination of the core-regionlintermediate- 
region matching and of the exterior-regionlintermediate-region matching, the 
uniformly valid description of the structure of the self-similar turbulent axi- 
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symmetric jet is complete. The analytical predictions of the core-region distributions 
of the axial and radial velocities and the shear stress are compared in $6 with the 
experimental data of Wygnanski & Fiedler, with good results. Available ex- 
perimental results, however, do not extend to the exterior region, as defined in this 
paper. 

2. Equations of mean motion 
Consider the steady flow of an axisymmetric/round fully developed turbulent jet 

of a homogeneous, incompressible fluid ( p "  = const.). Let X = (x-zo)/Bj and R = 
g/Bj represent the axial and radial coordinates, with r?, 2 = 0 denoting the origin of 
the jet, Bj the initial jet radius, and x, the 'origin of similarity '. The mean velocity 
components in the axial and radial directions, respectively, are U = o/oj and V = 
p/oj, with oj the reference jet-exit speed; the mean pressure is P = (p-pm)/pq, 
with pm denoting the ambient pressure. The turbulent shear- and normal-stress 
components are 

- - - ,p? v"'2 

and M = T,, = and N = TRR = 
G'fi' T = TXR = TRx = --- 
v;"' 

In  the foregoing, the tilde quantities are dimensional, the primes denote the 
fluctuating quantities, and the overbars denote time-averaging. 

The continuity and momentum equations describing the mean flow are 

(2 .2a)  

(2 .2b)  

The far-field and centreline boundary conditions for (2 .1)  and (2 .2)  are 
U,  V ,  P ,  T ,M,N+O as R+co ; ( 2 . 3 a )  

(2 .3b)  
aR 
au 

17,--,T+O, U+finite as R+O. 

The downstream analysis considered here does not address the initial conditions. 
Integration of the continuity and momentum equations (2 .1)  and (2 .2)  with 

respect to R ,  over the domain of R,  subject to the boundary conditions (2 .3)  yields 

J o r n [ ~ + ~ - - ~ ~ ~  = -,const., z' 
2x 

(2 .4)  

(2 .5a)  

P ~ R .  (2 .5b)  

Here, E is the entrainment, and 2' is the kinetic momentum. 
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3. The downstream core region 
Attention is directed to  the flow region far downstream of the nozzle exit, 

characterized by x = 6X and r = R ,  with x , r  - O ( l ) ,  and with 6 < 1 ,  such that 
R / X  = 6(r /x )  - O(6) .  The quantity 6 is identified as a small parameter from a 
consideration of the experimental data for representing the centreline velocity as a 
function of the axial distance. In the present notation, to  leading order of 
approximation, i t  is found that this representation is Uc x with 6 - O(10-l) 
(see 56 for the details of this identification). The flow quantities for this downstream 
region are, in turn, scaled as 

!P(X,R; ...)=$( x , r ; 6 ) :  U = u ,  V = 6 v ,  ( 3 . 1 ~ )  

(3.1 b )  

( 3 . 1 ~ )  

P ( X , R ;  ...) = 6 p ( x , r ; 6 ) ,  

T ( X , R ;  ...)= 67(x,r;6), M ( X , R ;  ...) = 6 p ( x , r ; 6 ) ,  N ( X , R ;  ...) = & v ( x , r ; S ) .  

Thus, the differential equations of mean motion in this region are 

The centreline boundary conditions are, now, 

au 
v , - - ,7+0,  u+finite as r+O. 

ar 

In  turn, (3.2)-(3.4) can be combined to give the following integral relations: 

L I u p d p  = -rv, 

&Jb [u2++(p-p)]pdp = -r[uv--], 

[uw-7]pdp = - r  

(3.2) 

( 3 . 3 4  

(3.3b) 

(3.4) 

(3 .5a)  

(3.5b) 

(3.5c) 

As r +  00, subject to verification of the far-field behaviour, it is taken that (3.5b) 
becomes 

1 $1; [u2+6(p-p)]rdr = - ( r [uz , -7] ) , ,  = 0:  

1 1: [u2 + S(p -p)]  r dr  = ;.Z, const. 

Thus, (3 .6)  represents the core-region contribution to the (overall) axial-momentum 
integral relation of ( 2 . 5 ~ ) .  



Fully developed incompressible, free, turbulent, round jet 97 

For the self-similar formulation of this region, the independent and dependent 
variables are 

r 
[ = x ,  y = - ;  (3 .7)  

X 

( 3 . 8 ~ )  

p (x ,  r ;  6) = E-"n(y; 61, (3.8b) 
~ ( x , r ; S )  = E-2@(y;6), ,u(x,r;S) = c-2J(y;S), v ( x , r ; 6 )  = t-'K(y;6). ( 3 . 8 ~ )  

Introduction of (3.7) and (3 .8)  into (3.2) and (3.3) produces 

(3.9u) 

(3.9b) 

The primes in (3.8) and (3.9) denote differentiation with respect to y. The centreline 
boundary conditions are 

In this self-similar formulation, (3.6) becomes 

1; [ 0' + 6(n- J ) ]  7 dy = $2. 

(3.10) 

(3.11) 

The introduction of the pressure-integral function, A ,  defined by 

A =  ndy', such that IT= A', (3.12) 

leads to the following self-similar boundary-value problem for the downstream core 
region of the turbulent round jet : 

l 
( 3 . 1 3 ~ )  

F 
7 

y@ + F - + 6{y2 (A' - J ) }  = 0, 

(3.13b) 

(3.14) 

(3.15) 

Note that ( 3 . 1 3 ~ )  and (3.13b) are the first integrals of ( 3 . 9 ~ )  and (3 .9b) ,  respectively, 
obtained through the employment of the centreline boundary conditions of (3.10) 
and (3.12). 

A more detailed examination of this self-similar downstream region is facilitated 
with the introduction of the following asymptotic representations : 

(3.16) G(y ; 6) N G,(y) +6G,(y) + . . ., with G = F, A ,  @, J ,  K. 
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F 
'I 

q @ , + F , O  = 0 ,  

'I(AA-K,)-A, = 0:  l7, = A; ,Ko  = 7 

F,, FA, A,,  @,, + 0, 3 + B, as q + O ,  
'I 

( 3 . 1 7 ~ )  

(3.17 b )  

( 3 . 1 7 ~ )  

(3.17 d )  

( 3 . 1 8 ~ )  

(3.18b) 

( 3 . 1 8 ~ )  

(3.18d) 

To proceed, based on experiment and (constant-eddy-viscosity) theory (as reported 
by Hinze 1975, Schlichting 1979, and others), the zeroth-order approximation for the 
axial-velocity function is taken to be 

where k = c2q2. Introduction of ( 3 . 1 9 ~ )  into (3.17d) yields (B, /c)  = (32);. In what 
follows, it is taken that B, = 1, and, in turn, c = (3Z)-i. The fat--field and centreline 
behaviour for this function is 

%+ k-l(l-2k-'+. ..) + O  as k+ 00, 
'I 

(3.19b) 

The corresponding approximation for the stream function is 

with A ,  = : Z :  
Boy2 - k 

F -  
O - 2(1 +c2q2) 

Po +Ao( 1 - k- l+  . . . ) + A ,  

F, +Ao k( 1 -k+ . ..) - t O  

as k + 00 , 

as k + O .  

( 3 . 1 9 ~ )  

( 3 . 2 0 ~ )  

(3.20 b )  

( 3 . 2 0 ~ )  
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From (3.19) and (3.20), the zeroth-order radial-velocity function is 

(3.21 a )  

1 5- FL +- k-i( 1 - 3k-' + . . .) -+ 0 as k + 00, 

5- Fk -+ -- kz( 1 - 3k + . . .) --f 0 as k -+ 0. 

(3.21 b )  3 2c 

3 2c 
1 1  

( 3 . 2 1 ~ )  

The leading-order approximation for the shear-stress function, in turn, is 

(3.22 a )  

1 
2c 

@, -+ - - k-g( 1 - 3k-' + . . . ) + 0 as k -+ co , (3.22b) 

1 
2c 

@,+--k~(1-3k+...)-+O as k+O. ( 3 . 2 2 ~ )  

The experimental work of Wygnanski & Fiedler (1969) suggests the following 
approximations for J ,  and K O  : 

with 0 < a, < 1 : ( 3 . 2 3 ~ )  

J, -+-a ,k-2(1-2k-1+. . . ) -+0  as k - + c o ,  (3.23 b)  

J0-+-a,(l-2k+ ...)+- a, as k-+O; ( 3 . 2 3 ~ )  

a, 1 
J ,  = - = - a o -  

( 1 f C  7 1 ( 1 + k ) 2  ' 

K = -  bo 2 2 2 - - - b o r n 7  with 0 < b, < a, < 1 : (3.24 a )  
1 

O ( 1 + c 7 )  

KO -+ - b, k-2( 1 -2k-'+. . .) -+ 0 

KO -+ - b,( 1 - 2k + . . . ) + - b, 

as k+ co, (3.24 b )  

( 3 . 2 4 ~ )  

The evaluation of a, and b, from experimental data is presented in $6. From (3.17 b ) ,  
it follows that 

as k -+ 0. 

( 3 . 2 5 ~ )  

(3.253) b, -a A, -+- k z( 1 -Qk-' + . . .) -+ 0 

A, -2 d[ln (k-l) - 1 + 2k- + . . .] + 0 as 

as k -+ co, 
4c 

b 
2c 

( 3 . 2 5 ~ )  k --f 0. 

Thus, the leading-order approximation for the pressure function is 

( 3 . 2 6 ~ )  

no -+ -9, k-2( 1 -?k-' + . . .) + 0 

no -+$,[ln (k-') -3 + 6k + . . .] -+ co 
as k -+ co, 

as k -+ 0. 

(3.26b) 

( 3 . 2 6 ~ )  
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The logarithmic blow-up of the ‘models’ for A,  and Il, as k+O is a consequence of 
the employment, in (3.17b), of the experimentally based ‘model’ for KO,  where 
Ko+-b, < 0. No further consideration is given to the centreline blow-up, as the 
emphasis of this paper is on the effect of the ‘models’ for the pressure and normal 
stresses on the far-field behaviour. 

Now, the first-order approximation for the axial-velocity function is taken to  be 

E”; - = B , -  with B, = -32a0-b0) < 0:  (3.27a)t 
9 ( 1  + k)2  ’ 

1 

%+B, kP2( l  -2k-1 + ...) -+O as k+ 00, 
T 

(3.273) 

3 + B l ( 1 - 2 k +  ...)+ B1 as k+O. 
T 

( 3 . 2 7 ~ )  

The value of B, is determined from the first-order momentum-integral relation, 
(3.18d), with B, = 1. The corresponding stream function is 

with A, = -~(2a,-b0)Z < 0 :  ( 3 . 2 8 ~ )  
k 

l + k ’  
F,=A,- 

F1+Al(1-kk-’+...)+A, as k- tco ,  (3.28b) 

F, +Al k( 1 - k + ...) + 0 as k+ 0. ( 3 . 2 8 ~ )  

The first-order radial-velocity function is 

Fl 
T 2c (1+k)2 ’ 

B, ki( 1 - k )  - -F;  = - 

B i  
F’-F;+-’ks(l-3k+...) 2c + O  as k+O. 
T 

(3.29 a) 

(3.29 b)  

( 3 . 2 9 ~ )  

The resulting first-order approximation for the shear-stress function is 

( 3 . 3 0 ~ )  
1 

l + k  ( l + k ) 2  = - k:j3, C [ln {?} -L] +-- 

k-t 

4c 
0, + -- [(4a0- 3b,) -$(42a0-29b,) k-’ + . . .] + 0 as k+ co, (3.30b) 

ki 
@I.+ -- [bo 1n (k-’) - 3 2 ~ ~  + 3b0) +;( 10uo + 3b,) k+ . . .] + 0 as k + O .  ( 3 . 3 0 ~ )  2c 

t Thus, to this order of approximation, F’/q z (F; / v )+&(F; /q )  = (B,+SB,)/(l  + k ) a ,  with 
B, = I ,  B,  = -f(2a,-bb,), and the experimentally determined profile is maintained. 
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Here, the approximations for J ,  and K,  are taken to be 

1 
( l + k ) ”  

with a, = const. (to be specified) : (3.31 a)? 

J,+-a1k-2(1-2k-’+...)+0 as k + m ,  (3.31 b) 
J ,  + -al( 1 - 2k + . . .) +-a, as k --f 0;  (3.31 c) 

with b, = const. (to be specified) : (3.32 a )  t 

K1+-b,k-2(1-2k-1+...)+0 as k + 0 0 ,  (3.32 b)  
K ,  +-b1(l-2k+. ..) +- b, as k+ 0. ( 3 . 3 2 ~ )  

From (3.18b), it is determined that, subject to the pertinent boundary conditions, 

J, = -a,- 

1 
Kl = - h p p  

A o k i ( i - k )  +2 b [ In { I i k }  - -- 1 ] A =-- 
4c (1+k)2  2c l + k  

(3.33) 

In turn, 

l7, + - ;Ao k-’( 1 - 9k-‘ + . . .) -9, kP2( 1 - + . . .) + 0 as 

l7, +-iAO(l -9k+. . .) +!$, [In (E l )  -3  + 6k+. . .] + 00 

k + 00, (3.343) 
as k+ 0. ( 3 . 3 4 ~ )  

Higher-order solutions for the core-region flow quantities are not considered here. 
It is noted, however, that a preliminary study of the second-order boundary-value 
problems shows that the far-field behaviour of the velocity solutions of this order is 
such that the momentum-integral relation of (3.11) fails. This failure stems from the 
interaction of the higher-order core-region flow quantities with the leading-order 
quantities of the intermediate region analysed in $4, and with those of the exterior 
region, analysed in $5. This three-region interaction requires the consideration of the 
self-similar form of the momentum-integral relation of (2.5a), rather than (3.11). 

From the preceding developments, it is now possible t o  determine the far-field 
behaviour of the solutions in the limit of 3-f co, S + O ,  such that 8 = &q - O(1). In 
this limit, k = c2q2 = +26V2+ co ; and 

Y -  5[F0+6F1+ ...I 
+- [[:Z- S{$228-2 +:(2a0 - b,) 2 + . . .} + 0 ( S 2 ) ] ,  (3.35 a)  

u - 5-’ -+S‘+ ... KK 1 
+ S2t;-1[{9228-4 + . . .} + O(S)], (3.353) 

V - - S5-l E- F; + S t-li’;) + . . .] 

t To this order of approximation, J x Jo + SJ, = - (ao + Sa,)/( 1 + l ~ ) ~ ,  K x KO + SK, 
= - (b, + Sb, ) / (  1 + k)’, and the experimentally determined profiles are maintained. 
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M - 6[-'[J, + 6Jl + . . .] 
-+ - 635-2[{9~0 2W4 + . . .} + O(S)], 

.+ - 6 3 i 3 { 9 b O  2 2 e - 4  + . . .I + o(s)l; 

(3.36 b) 

(3.36 c) 

(3.37) 

N - 6[:-2[K0 + SK, + . . .] 

P - s[-z[n, + 617, + . . .] 
-+ - S 3 L 3 { 7 b ,  Z28-4 + &Z2B2 + . . .} + O(S)].  

4. The downstream intermediate region 
The results of (3.35)-(3.37) indicate that, to ensure uniform validity, a region 

exterior to the downstream core region is required. For this region, designated here 
as the downstream intermediate region, the appropriate scalings of the original 
independent and dependent variables are 

xk = 6X, rk = dR; 
3A 5 

Y(X,R;6) = A , x ~ + + $ ~ ( x ~ , ~ ~ ; S ) :  U = S2uk, 17 = - & 3 + 6 i v  ky 
' k  

P ( x ,  R; 6)  = 63pk(xk, r k ;  61, 

I T(X,R;S) = $ ~ ~ ( x ~ , r ~ ; S ) ,  

M(X,R;6) = 63,&!k(xk,Tk;6), N(X,R;d) = 63vk(xk,rk;6). 
These variables are related to those of the core region through 

xk = x ,  rk = d r ;  

$ = A,xk+&kk, with A ,  = $2: u = 6'uk, v = 6i '( t k + 6 v k ) p  

p = 62p,, 7 = $Tk, p = 62pu,, v = 6'Uk.  

Introduction of (4.1) and (4.2) into (2.1) and (2.2) produces 

auk 

' k  ark 

(4.1) 

( 4 . 2 ~ )  

(4.2b) 

( 4 . 2 ~ )  

(4.3) 

(4.4) 

(4.5a) 

(4.5b) 

It is seen that these scalings for the variables yield a region in which there is, to  
leading-order of approximation, a convection-pressure-gradient-shear-stress- 
normal-stress balance in the axial-momentum equation, (4.5 a ) ,  and a convection- 
pressure-gradientinormal-stress balance in the radial-momentum equation, (4.5 b ) .  

A self-similar formulation of this intermediate region is sought through the 
introduction of the following variables : 

[ = xk,  0 = r k / x k ;  (4.6) 

(4 .74  

P k ( X k , T k ; & )  = [ - ' n k ( e ; 6 )  [-'/i;(e;s), (4.7 b )  

(4.7c) 

$k(xk> r k  ; 6, = Uk(8 ; 6)  : uk = [-'e F ;  9 vl, - - -t-l(%-F;), e 

Tk(xk,rk;s) = [-"k(o;6), pk(xk,rk;a) = c - " k ( e ; s ) ,  v k ( x k , r k ; s )  = [ -2Kk(e;8)*  
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The independent variables of the intermediate region are related to those of the core 
region by 

The resulting self-similar axial- and radial-momentum equations are 
(4 .8)  5 = xk = 2, e = rk /xk  = &-/x = $7. 

(4.9u) 

Again, it is appropriate to introduce asymptotic representations for the dependent 
variables, i.e., 

G k ( 8 ; 6 )  - Gko(e )+  ..., with Gk = F , , A k G k , J k , K k .  (4.10) 

Thus, the zeroth-order equations for the intermediate region are 

@kO + AOFiO -- +8(/1;,-Jk0) = 0, (4.11a) e e  

(4.11 b )  
'k0 A2 A' ---K +A=(). 

The solutions of (4.11) that match to those of the (far-field) core region of $3  - and 
that match to those of the anticipated (near-field) exterior region of 55 - are 

Fko = $4, 8' + A ,  - 2~4: 8-' : ( 4 . 1 2 ~ )  

5 = $4,+e4:8-4, G - F ; ,  = -{~A08-A,8-1+6A,28-3}; (4.12b,c) 

@kO = - { $ 4 0  8-1 + (4ao - 3bo) 8- + e-5>) (4.13a) 

(4.13b,c) 

nk, = - { 1 L o e - 2 + 3 b o ~ ~ e - 4 ) .  (4.14) 

Recall that  A ,  = $2, A ,  = - 3(2a, - b,) 2, . . . . Higher-order solutions for this 
intermediate region are not pursued here. 

In  the limit of 9-t co, 6+0, such that 5 = $0 - 0(1), the variables of the 
intermediate region have the following behaviours : 

yYN ~ [ A o + ~ F ~ o +  . . . ] ~ 5 [ A  ,(1+ay)+0(6)], (4.15a) 

u- s ~ T ' ~ + . . . ] ~ 6 ~ 5 - ' ~ ~ , + O ( s ) l .  (4.15b) 

k0 6 k0 6 2  

e e 

J,, = -{po8-2+4a,A,28-4}, Kko = - {v ,8-2+4boA~0-4} ,  with 2p,-v, = A : ;  

v - - 86-1 Po 8-1 - s(F;, - %) + . . .] +. - ay-yA, [-I( 1 - g) + o(s)l; (4.15 c )  

T - dg-'[@ko+ ...]-t-S"5-'[~~~-'+0(6)], ( 4 . 1 6 ~ )  

k! p[-'[Jk0 + . . .] + - 8 f 2 [ p o  5-2 + 0 ( 6 ) ] ,  (4.16b) 

N - 636-2[KkO+ . . . ] - . -S"5-2[Yo52+O(6)] ;  ( 4 . 1 6 ~ )  

P - s3(-'[[nko + f .  .] + - S"$2[po S2 + 0( 6) ]  (4.17) 
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5. The downstream exterior region 
The uniformly valid characterization of the far-field development of the turbulent 

round jet is completed through the introduction of the downstream exterior region, 
wherein the axial and radial lengthscales are equal, i.e. 

and the appropriate scalings of the flow quantities are 

U ( X , R ; 6 ) = + , ( x , , r , ; S ) :  U=S2u , ,  V=a2v8, ( 5 . 2 ~ )  

(5.2b) 

( 5 . 2 ~ )  

P(X, R ; 8)  = Pp,(x,, r, ; 61, 
T(X,R;6) = P 7 , ( x 5 , r , ; 6 ) ,  M ( X , R ; S )  = Pps(x,,r,;8), N ( X , R ; b )  = s4v,(x8,rg;6). 

In  this region, the vorticity is 

av au 
SZ(X,R;d)  =--- =830,(x,,r8;6) = a 3  

aX 8R 

In  terms of these exterior-region variables, the equations of motion are 

Taking this exterior region to  be an irrotational one, (5.3) becomes 

(5.3) 

(5.4) 

(5.5a) 

(5.5b)  

The boundary conditions for these equations are 

Again, a self-similar formulation is sought for this region in terms of the following 
variables : 

f = x,, 6 = rs/x,; (5.8) 

F' 

5 (5.9a) 
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In turn, (5.5) and (5.6), subject to (5.7), can be written as 

{ c~~ + f @ - F:)} + g { ( A: - J, )  + ($!I} = 0, 

{A:  - $- K ,  + @ -F;)'} + [{ Q, +? - F;)} = o ; (5.10b) 

F,)]' = 0. 

(5.10~) 

(5.11) 

An asymptotic analysis of this region, in terms of an expansion of the form 

G s ( c ; & ) - G 8 o ( c ) + - - - ,  with Gg=Fs,As,Q#,Js>Ks, (5.12) 

from a consideration of (5.10) and (5.11), leads to 

Fso = $40[(l+q)i+1]: (5.13 a) 

A' so - J  so = -  r;O)' - =-- ;&(l+p)-l, (5.14b) 

Aio---K 4 0  =-  (";. --F' = -&?l;c-'[l+(l+p)-~]'l. (5.14 c) 

The results for the velocity functions of (5.13) are consistent with those reported by 
Landau & Lifshitz (1959). The results of (5.14) represent new information concerning 
the behaviour of the stress functions in the far-field. Higher-order solutions for the 
exterior region are not pursued here. 

c so 

The far-field (c+ 00)  behaviour of these zeroth-order functions is 

Fso - & 4 , ~ ( 1  + c-'+ ...) + co : (5.15~) 

K O  - - &40~-1(1-g-'+...)+o, e 
Fso -- ~ ~ o - ~ o ~ ' ( l + ~ - : - ' + . . . ) + o ;  c 

A:,-J,O - -;A: c-'( 1 + . . .) +0 ,  

cPSO - -LA' 4 0  [-'( 1 + . ..) + 0, 

(5.15b) 

(5.15 c) 

(5.16~) 

(5.16b) 

4 o[-:-"(l + ...) +o. (5.16~) A' ---Kso 4 0  - -LA2 
so 5 

It is noted that the behaviour of the pressure and normal-stress functions is 

n s o  = A:o - -no [-'( 1 + . . .), Jso N - 01, [-'( 1 + . . . ), Kso N -Po [-'( 1 + . . . ), 
if (no-ao), (2n0-/3,) = i.e. (no+ao-/lo) = 0. (5.17) 
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The near-field (c+ 0) behaviour of these functions is 

W .  B.  Bush and L. Krishnamurthy 

F,, - A o ( l + g +  ...)+ A,: 

K O  - - $ 4 0 ( l - g + . . . ) + $ 4 0 ,  c 

(5.18a) 

(5.18b) 

- F:, - A, [-l( 1 - + . . . ) + a ; 

@so - -$gt;-'( 1 - g +  ...)+-a, 
A:,-J,, - -1A :(l-s+ ...)+- +A:, 

A:,-- 4 0  - K,, - - A : c 2 ( l - g + . . . ) + - a .  

( 5 . 1 8 ~ )  

(5.19 a) 

(5.19b) 

( 5 . 1 9 ~ )  

c 

s 
The behaviour of the pressure and normal-stress functions is 

if no = /A, and 2p0 - v, = A:. (5.20) 

It is seen that these functions (i) satisfy the boundary conditions at  infinity, and (ii) 
match to the far-field behaviour of the intermediate-region functions. 

nu, = A : ,  - -n,$2(1+...), J,, - -/Ao$2( 1 +  ...), K,, - - v o g " l + . . . ) ,  

6. Results and discussion 

expressed, in the present notation, as 
The experimental data for the centreline velocity as a function of axial distance are 

with C = const. (determined experimentally), 
2 c  =- D C  C 

u, (x-xo)/2Bj X' Uc="X 

(6.1) 
i.e. the centreline velocity is inversely proportional to the axial distance in the self- 
similar downstream zone. Hinze & Van der Hegge Zijnen (1949, hereinafter referred 
to as H-VdHZ), found C w 5.9, (2C)-' x 0.085 for 20 < X < 100; Wygnanski & 
Fiedler (1969, referred to as W-F), found C x 5.4, (2C)-' x 0.093 for 50 < X < 180. 
In the self-similar analysis of $3, it is found that the centreline velocity is 

Uc - [-'[B,+SB,+ ...I, with [ = SX, B, = 1, B, = -f(2a,-b0), .... (6.2) 
From the W-F data, SB, x -0.079 (as is shown later in this section). A comparison 
of (6.1) and (6.2) indicates that, if terms of O(S2) are neglected, 

2C x E1[l + (SB,)] and/or 6 x (2C)-' [1+ (SB,)] : 
S x 0.086 for (2C)-l x 0.093, SB, x -0.079. (6.3) 1 

For the purpose of consistency only, hereinafter W-F is employed as the basis for 
comparison. 

The axial-velocity-distribution data are (most often) presented as 

with 5 = R / X ,  L2 = const. (determined experimentally). (6.4) 
The measurements of H-VdHZ give L2 x 63.8; W-F find L2 x 57.8. When terms of 
O(S2) are neglected, the core-region analysis of $3  shows that 
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FIGURE 1 .  (a). Comparison with mean-velocity data of Wygnanski & Fiedler (1969) ( x ). 
( b )  Core-, intermediate-, and exterior-region mean-velocity prediction. 

A comparison of (6.4) and (6.5) yields 

L2 x (3ZS2)-' and/or 2 w (362L2)-1 : 

2 x 0.78, c = (3Z)-t x 0.65, A ,  = $2 x 1.2 for 6 x 0.086, Lz x 57.8. 

The far-field axial-velocity distribution determined by the zeroth-order exterior- 
region analysis of $ 5 ,  with &Y2A, = (4L2)- l ,  is 

2 -1 
(4L ) = U*,,,([; L ) ,  with (4L2)-' w 0.00433 for L2 x 57.8. (6.7) u*=-x- U 

u, (l+tfL)i-- 

In figure 1 (a), U&RE([; L ) ,  given by (6.4), is compared with the data of W-F. Not 
surprisingly, this representation compares well with the data. Figure 1 ( b )  shows 
Uz*,,E([;L) and UgxT([; L )  of (6.4) end (6.7), respectively, as well as U;NTER(<; L ) ,  
the intermediate-region representation. Since the data of W-F (and others) do not 
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FIGURE 2. ( a )  Comparison of radial-velocity distribution across the jet, with W-F ( x ). 

( b )  Core-, intermediate-, and exterior-region radial-velocity results. 

extend to the exterior region, as defined in this paper, it is not possible to make a far- 
field comparison. 

When terms of O( S2) are neglected, the core-region radial-velocity distribution can 

The zeroth-order exterior-region radial-velocity distribution is given by 

Figure 2 ( a )  compares V,*,,,([;L), of (6.8), with the data of W-F. Again, the 
comparison is good. The solutions V,*,,,(g;L), VgxT(c; L ) ,  and V:NTER([;L) are 
shown in figure 2 ( b ) .  
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Since, for the core region, 

the pertinent zeroth-order representation for the shear-stress distribution is 

(6.10) 

This is essentially the relation for the shear-stress distribution employed by Hinze 
(1975). For the exterior region, 

and the corresponding zeroth-order shear-stress distribution is 

(6.11) 

with (4L2)-2 x 0.0000187 for L2 x 57.8. I 
In figure 3(a), @EORE(c;L) ,  of (6.10), is compared with the data of W-F, with good 
results. Figure 3 (b )  displays the solutions 4jEoBE(c;L), @ZxT(g;L), and @&TER([;L). 

For the core region, the normal-stress components are 

M = -- = - ~ ’ 2  = Sp = St-’J, 
- 
C’= - 

T 

T 

- 
p - 

N = - - = - v ’ 2 =  SV = St-2K, 

where, at the very least, the zeroth-order approximations/models, J ,  and KO, 
employed in the analysis presented in $3, require the specification of the centreline 
values, a, and b,, respectively. The data of W-F, in conjunction with these zeroth- 
order models, lead to the normal-stress distributions 
- - 

(U’2)t (SU,)t (v’2)i (Sb,)t 

ut 1+L2P’ u, 1+L2S’ 
-x- - x- with (SU,)~ x 0.29, (Sb,)f % 0.25. (6.12) 

From(6.12),Sa0 x0.084,Sbox0.063:a,x0.98,b,x0.73for6x0.086,and,inturn, 

SB, x -0.079: B, x -0.92 for S x 0.086, 

SA, = A,(?&,) x -0.095: A ,  x - 1.1 for S x 0.086, 2 % 0.78. (6.13) 

The evaluation of SB, follows directly from the normal-stress data/model 
comparison, without the specification of S. Thus, it is consistent to employ 
SB, x -0.079 to evaluate 8, as is done in (6.3). 

The research reported herein waa supported in part by the United States Air Force 
Office of Scientific Research under Contract No. F49620-88-C-0040 (Major James M. 
Crowley, Project Monitor). 
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FIGURE 3. (a) Comparison of shear-stress distribution across the jet, with W-F ( x ). 

( b )  Core-, intermediate-, and exterior-region shear-stress predictions. 
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